If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-20x-5=0
a = 25; b = -20; c = -5;
Δ = b2-4ac
Δ = -202-4·25·(-5)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-30}{2*25}=\frac{-10}{50} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+30}{2*25}=\frac{50}{50} =1 $
| -5(r+8)=-54 | | 3(5x+2)=-4(5x+2) | | n+2/1=0 | | 12a+2a+2a+3a-11a=8 | | -10x—10=-10x+-10 | | -25=5(g+3) | | x-0.1x=23.40 | | 2z-1=80= | | x/9-7=11/18 | | -6p=36 | | 13(3-x)=60 | | 7v-19=9v+5 | | 3x-1+(x+3)=3 | | C(y)=0.75y+50 | | -5+b/6=-1 | | 143=5x+13 | | 9x-134=19x+16 | | 6-y-3=4y-8 | | 13y+5y-10y=16 | | C(y)=50y+6 | | 3/4x-20=7 | | -134-9x=19x+16 | | 2x^2-3^2-4=0 | | -4x+3=7x-129 | | 196-5x=7x+16 | | 15c-11c=20 | | Y+6=10x^2-11x | | 5x+3=4x+14 | | 1/4x+1/3x=4 | | h=10-3 | | 9x^2-17+8=0 | | 6x+171=180 |